
International Journal of Scientific & Engineering Research, Volume 3, Issue 3, March-2012 1
ISSN 2229-5518

IJSER © 2012

http:/ /www.ijser.org

JACKY Operating System
Suvankar Barai

Abstract— JACKY is a new operating system kernel for IBM-PC compatible computers. This kernel is small, fast, and open source. It

operates exclusively in 32-bit mode and features real preemptive multitasking and virtual memory. An operating system kernel is a big

enough challenge to be discouraging at times. As an example, the command Interpreter I wrote over an one year period is trivial by

comparison. On the other hand, since I do everything by myself I am able to keep the development on a unif ied path. The architecture that

develops is -- I hope -- consistent (for better or worse) and thus the end product reflects the vision of a single programmer. It can be

argued that this is the good, old- fashioned way of producing software.

Index Terms— Stability, reliability, and security, Native Graphical environment, Command-line capabilit ies, Netw orkable, Compatible.

—————————— ——————————

I. INTRODUCTION

JACKY (Operating System) is a home- brewed computer
operating system kernel, which is still -- and is continually -
- in development. JACKY has initially been designed to
support PC- compatible computers. The design and inter-
face philosophies of JACKY are driven by the fundamental
goal of keeping some of the best features of other successful
systems, while discarding many of their notorious weak-
nesses. It follows then, that however many ideas JACKY
borrows from other operating environments, it is not -- and
does not try to be -- entirely compatible with any of those
other systems. Although some aspects of JACKY will
probably seem familiar with any other operating environ-
ment.

Some of the higher- level conceptual goals are as follows:

1. Stability, reliability, and security. These are primary
objectives. Not always achieved, but always important.

2. "Native" Graphical environment
 The base- level graphics server (analogous to an 'X'

server in Unix, but not X) will be integrated into
the kernel. A default GUI shell environment must
load and run "straight out of the box", with no
complicated setup procedure.

 The interface must be trivial to learn and use, even
for a computer novice. Most of its elements should
be familiar to all computer users. Just like the old
computer- industry cliche: "Something my Mom
can use".

 Something which might seem like a contradiction
of the previous item: A new metaphor for the GUI
environment. The tried- and- true desk-
top/office/files/folders paradigm is becoming a
little bit dated. This interface will put a new spin
on graphical shell design, without making it unfa-
miliar or non- intuitive. Stay tuned for details.

 To the greatest extent possible, the user should be
able to perform all tasks, including administrative
ones, using this "point- and- click" interface -- no
need to edit mysterious configuration files by
hand.

3. Powerful command- line capabilities (text windows and
scripting):

 Users must be given the ability to operate in a text-

based environment if they prefer to do so.
 Existing popular command shells will be sup-

ported. The native command shell will contain fea-
tures found in various systems (Unix and non-
Unix).

 Most common text- mode commands available on
other popular systems will be included and will, as
much as possible, be use model compatible.

 Some of GNU's Unix- like tools will be available
(see http://www.gnu.org).

 To the greatest extent possible, the user should be
able to perform all tasks, including administrative
ones, using this text interface. Configuring myste-
rious configuration files by hand is, therefore, op-
tional.

Fig. 1 Command-line in Graphical Environment

4. Highly networkable. JACKY will be very network
oriented. Stay tuned for more details about this as well.

5. Highly compatible. JACKY will conform to existing

International Journal of Scientific & Engineering Research, Volume 3, Issue 3, March-2012 2
ISSN 2229-5518

IJSER © 2012

http:/ /www.ijser.org

standards to the greatest extent possible. It is not desirable
for JACKY to define new formats (such as a new filesystem
type).

Examples of supported standards will include:

 Filesystem types
 Executable/object/library file formats
 Image, sound, font, compression and (enhanced)

text file formats
 Encryption algorithms
 Network protocols
 Software development environment conventions
 Operating system API calls.
 Hardware interface standards (e.g. VESA)
 Basic POSIX compliance, where possible

Fig. 2 Loading File-system and Kernel

II. CURRENT DEVELOPMENT STATUS
JACKY is still in a fairly early stage of development. Cod-
ing work was begun as a part- time operation in late 2005.
The majority of the code is written in C, with portions writ-
ten in x86 Assembly Language. The present incarnation
of JACKY boasts enough features to classify it a promising
project, but not enough to make it useful to non- technical
users in its current state. The following is a list of imple-
mented and unimplemented functionality; keep in mind
that this does not represent the complete list of planned
features -- only short- and medium- term goals are listed
here:

Implemented (or mostly implemented):

 Fully 32 bits, "protected" mode
 Preemptive multitasking and multi- threading
 Virtual memory, and memory protection
 Flat linear memory management
 Graceful processor fault and exception handling
 Good random number capability
 Filesystem support for: Virtual filesystem API Buf-

fered, asynchronous filesystem IO Multi- threaded
filesystem functions and device locking 12, 16, and
32- bit FAT filesystems (commonly used by DOS
and Windows)

Multiple mount points, multiple disk slices, or par-
titions, on a single device

 Abstracted loading and management of device
drivers

 Delayed event scheduling
 Device support for Single 486, K6/MII/Pentium

processor (or better) RAM above 64Mb Programm-
able Interrupt Controller (PIC) System timer chip
Real- Time Clock (RTC) chip Keyboard controller
Text console IO Direct Memory Access (DMA) con-
troller Floppy disk drives Fixed (hard) disk drives.

Partially implemented:

 Kernel API
 Native command line shell
 Loader
 Standard C library

Unimplemented (or mostly unimplemented):

 Multi-user operation
 Inter- Process Communications (IPC) facility
 IO Protection
 FPU state saves
 Assembler and compiler (ports of NASM/GAS

and gcc)
 Native linker, or satisfactory port of GNU linker, ld
 Support for Elf, a.out, and PE executable formats,

loader relocation
 Dynamically loaded/linked libraries
 Emulation of other operating systems' APIs
 Filesystem support for: Ext2/Ext3 filesystems

(commonly used by Linux) NTFS filesystems
(commonly used by Windows NT/2000 and Li-
nux) CD-ROM filesystems (ISO9660/Joliet) (others,
as demand dictates)

 Device support for: Multiple processors 3DNow!
and MMX processor extension Plug and play PCI
bus devices Modem Network Interface Card (NIC)
Printers (many others)

III. DEVELOPMENT ENVIRONMENT
JACKY is developed under Red Hat Linux 9.x, using the
GNU C compiler and the NASM assembler.

IV. ACKNOWLEDGEMENTS
This work was supported by Jadavpur University, Kolkata.
Website: www.jackyos.co.nr

V. REFERENCES
[1] Katrin Becker (becker@cpsc.ucalgary.ca) at the Universi-
ty of Calgary for helpful advice about free- list management
in filesystems. I should have paid more attention in class.
[2] John Fine (johnfine@erols.com), Alexei A. Founze(
alex.fru@mtu-net.ru), and the rest of the regular contribu-
tors to the comp.lang.asm.x86 and alt.os.development new-
sgroups. Thanks for always taking the time to help people.
[3] Jerry Coffin (jcoffin@taeus.com) and Ratko Tomic for

http://jackyos.110mb.com/jackyos/about/wrong.html#ioprotection
http://jackyos.110mb.com/jackyos/about/wrong.html#float
http://www.gnu.org/software/binutils/binutils.html

International Journal of Scientific & Engineering Research, Volume 3, Issue 3, March-2012 3
ISSN 2229-5518

IJSER © 2012

http:/ /www.ijser.org

posting information about alternate text mode video confi-
gurations.
[4] Ralf Brown (ralf@pobox.com) for creating and maintain-
ing the indispensable Interrupt List
(http://www.cs.cmu.edu/afs/cs/user/ralf/pub/WWW/f
iles.html); David Jurgens for HelpPC. Both are excellent
PC programming resources.
[5] Frank van Gilluwe for "The Undocumented PC" (Addi-
son-Wesley, ISBN# 0-201-47950-8); Tom Shanley for "Pro-
tected Mode Software Architecture" (Addison-
Wesley/Mindshare ISBN# 0-201-55447-X)
[6] Bob Watson (rhwatson@sympatico.ca) for maintaining
the MS-DOS7 Commands page at
http://www3.sympatico.ca/rhwatson/dos7/.
DOS/Windows installation tools wouldn't work as well as
they do without the aid of this site.

